Modeling hydrogen isotope behavior in fusion plasma-facing components

نویسندگان

  • Alice Hu
  • Ahmed Hassanein
چکیده

Article history: Received 15 August 2013 Accepted 25 November 2013 Available online 28 November 2013 In this work, we focus on understanding hydrogen isotope retention in plasma-facing materials in fusion devices. Three common simulation methods are usually used to study this problem that includes Monte Carlo, molecular dynamics, and numerical/analytical methods. A system of partial differential equations describing deuterium behavior in tungsten under various conditions is solved numerically to explain recent data compared to other methods. The developed model of hydrogen retention in metals includes classic, intercrystalline and trapped-induced Gorsky effects. The bombardment and depth profile of 200 eV deuterium in single crystal tungsten are simulated and compared with recent work. The total deuterium retention at various temperatures and fluences are also calculated and compared with available data. The results are in reasonable agreement with data and therefore, this model can be used to estimate deuterium inventory and recovery in future fusion devices. 2013 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling hydrogen and helium entrapment in flowing liquid metal surfaces as plasma-facing components in fusion devices

In a fusion reactor, the ability to use liquids as plasma-facing components (PFCs) depends on their interaction with the plasma and the magnetic field. One important issue for the moving liquid is the ability to entrain particles that strike the PFC surface (helium and hydrogen isotopes) while accommodating high heat loads. To study this problem, an analytical model and a two-dimensional compre...

متن کامل

Isotope effect and multiscale physics in fusion plasmas.

The mechanism governing the impact of the mass isotope on plasma confinement is still one of the main scientific conundrums facing the magnetic fusion community after more than thirty years of intense research. We have investigated the properties of local turbulence and long-range correlations in hydrogen and deuterium plasmas in the TEXTOR tokamak. Experimental findings have shown a systematic...

متن کامل

The Role and Application of Ion Beam Analysis for Studies of Plasma- Facing Components in Controlled Fusion Devices

First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma–wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-f...

متن کامل

Dynamic analysis of mixed ion beams/materials effects on the performance of ITER-like devices

Future reactors, e.g., ITER can require multiple plasma facing components (PFC) surfaces such as Be, C and W. Soon after the start of normal operation as well as after plasma transient events the surfaces can behave much differently than the original surfaces, and transport of eroded particles can influence plasma performance and component lifetime. A new dynamic version of ITMC-DYN, part of th...

متن کامل

Tritium behavior in eroded dust and debris of plasma-facing materials

Tritium behavior in plasma-facing components (PFCs) of future tokamak reactors such as ITER is an essential factor in evaluating and choosing the ideal plasma-facing materials (PFMs). One important parameter that in ̄uences tritium buildup and release in candidate materials is the e€ect of material porosity on tritium di€usion and retention. Di€usion in porous materials, for example, consists of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013